

Advanced

MATLAB

Christos Xenophontos

Department of Mathematics & Statistics

University of Cyprus

NOTES

The notes are separated into ótopicsô, as described by their title in bold capitals. These notes are not

meant to be a complete treatise on the subject, but rather a collection of useful information for

making your MATLAB experience more efficient. They are arranged in order, with the next topic

relying possibly on the previous one(s).

PREALLOCATION :

In order to avoid variables growing inside a loop, we pre-allocate:

Usually, in a program this amounts to initializing the variables.

VECTORIZATION:

The most time-consuming operation in MATLAB is performing loops . MATLAB offers

vectorization capabilities that allow us to avoid using loops . For example, consider

which adds consecutive terms in a random array of 100 entries. A much more efficient way of

doing the same thing is

The command find is quite useful when avoiding loops. It basically returns indices of non-zero

values and it can simplify code. For example,

As another example, let x = sin(linspace(0,10*pi,100)) . How many of the entries are

positive?

Remember: avoid loops, whenever possible.

SPARSE MATRICES

When a matrix contains mostly 0ôs, the use of the sparse matrix capabilities of MATLAB is

recommended. For example,

M_full = magic(1100); % Create 1100 - by - 1100 ómagicô matrix.

M_full(M_full > 50) = 0; % Set elements >50 to zero.

M_sparse = sparse(M_full); % Create sparse matrix of same.

whos

 Name Size Bytes Class Attributes

 M_full 1100x1100 9680000 double

 M_sparse 1100x1100 9608 double sparse

So a sparse matrix uses less resources and it should be used whenever possible, especially for very

large matrices.

The basic syntax is:

S = sparse(m, n) ï creates an m by n zero sparse matrix

S = sparse(A) ï converts full matrix into sparse form

(See help sparse for more uses.)

As an example, we consider the matrix

4 1

1 4

1

1 4

n nD ³

-è ø
é ù
-
é ù= Í
é ù-
é ù

-ê ú

,

which appears in the discretization of differential equations. The size n of D depends on the

discretization parameters, but it is usually large, e.g. O(105). Letôs see how to take advantage of

MATLABôs sparse capabilities and define the matrix D in an efficient way, for say n = 10000. The

number of non-zero elements in D is given by n + 2(n ï 1) = 3n ï 2. We then óallocate memoryô

for an n Ĭ n sparse matrix with (at most) 3n ï 2 non-zero entries as follows:

>> n=1000 0;

>> D = spalloc(n,n,3*n - 2);

Type help spalloc for more information.

Next, we insert the non-zero elements using, well, a loop:

>> D(1,1) = 1;

>> D(n,n) = 1;

>> for i=2:n - 1

 D(i,i) = 2;

 D(i,i - 1) = - 1;

 D(i,i+1) = - 1;

 end

>> whos D

 Name Size Bytes Class Attributes

 D 10000x10000 559976 double sparse

If the matrix was not defined as sparse, then the above result would have been

>> whos D

 Name Size Bytes Class Attributes

 D 10000x10000 800000000 double

As another example, we consider the matrix

2 2n n

D I

I D

A

D I

I D

³

-è ø
é ù
-
é ù
é ù= Í
é ù

-é ù
é ù-ê ú

,

where

4 1
1

1 4
,

1
1

1 4

n n n nI D³ ³

-è ø
è ø é ù

-é ù é ù= Í = Í
é ù é ù-
é ù é ùê ú

-ê ú

.

This matrix appears in the discretization of partial differential equations. First, we note that

0

0

B

A

B

è ø
é ù
=
é ù
é ùê ú

, where
D I

B
I D

-è ø
=é ù
-ê ú

.

Suppose the size of I and D is n Ĭ n and of A is 2mn Ĭ 2mn, for some m and n. Using the matrix D

we have already defined, we have

>> n = 10; m = 4; A = [];

>> I = eye(n);

>> B = [D, - I; - I,D];

>> for i=1:m, A = blkdiag(A, B); end

>> whos A

 Name Size Bytes Class Attributes

 A 80000x80000 5759496 double sparse

>> spy(A)

When a sparse matrix is used in the solution of a linear system A x = b, using the óbackslashô

command, x = A \ b, MATLAB detects and takes advantage of it, by using the most appropriate

linear solver.

LOGICAL ARRAYS

A logical array of 1 (true) and 0 (false) values is returned as a result of applying logical operators

to arrays, e.g.,

>> a = [4 0 - 2 7 0]

a =

 4 0 - 2 7 0

>> a > 0

ans =

 1Ĭ5 logical array

 1 0 0 1 0

>> a == 7

ans =

 1Ĭ5 logical array

 0 0 0 1 0

>> a ~= 0

ans =

 1Ĭ5 logical array

 1 0 1 1 0

>> (a >= 0) & (a <= 4)

ans =

 1Ĭ5 logical array

 1 1 0 0 1

>> (a < 0) | (a > 4)

ans =

 1Ĭ5 logical array

 0 0 1 1 0

>> ~((a < 0) | (a > 4))

ans =

 1Ĭ5 logical array

 1 1 0 0 1

A logical array may be used just like an index array to select and change the elements of an array,

e.g.,

>> a(a>0)

ans =

 4 7

>> a(a == 7) = 8

a =

 4 0 - 2 8 0

>> a(a ~= 0) = a(a ~= 0) + 1

a =

 5 0 - 1 9 0

MULTIDIMENSIONAL ARRAYS

We are mostly used to working with two-dimensional arrays (or matrices), but MATLAB allows

us to define arrays whose entries are arrays themselves, thus creating a multi-dimensional array.

Every value and variable is an array and has a size:

A scalar is a 0-dimensional array, a vector is a 1-dimensional array and a matrix is a 2-dimensional

array é conceptually é in practice they are all two-dimensional.

Array concatenation:

Universal function

cat(dimension,argument1,é,argumentN)

If we use 3 for the dimension, then we construct a 3-dimensional array

It has three indices:

CELL S AND CELL ARRAYS

A cell is a universal type that can hold anything:

We can also have cell arrays:

1 by 4 vector and 2 by 3 matrix, each cell containing a scalar.

There are also the commands: cell2mat, mat2cell , num2cell .

>> help cell2mat

 cell2mat Convert the contents of a cell array into a single matrix.

 M = cell2mat(C) converts a multidimensional cell array with contents of

 the same data type into a single matrix. The contents of C must be able

 to concatenate into a hyperrectangle. Moreover, for each pair of

 neighboring cells, the dimensions of the cell's contents must match,

 excluding the dimension in which t he cells are neighbors. This constraint

 must hold true for neighboring cells along all of the cell array's

 dimensions.

 The dimensionality of M, i.e. the number of dimensions of M, will match

 the highest dimensionality contained in the cel l array.

 cell2mat is not supported for cell arrays containing cell arrays or

 objects.

 Example:

 C = {[1] [2 3 4]; [5; 9] [6 7 8; 10 11 12]};

 M = cell2mat(C)

 See also mat2cell, num2cell

As an example, let us consider the following: we define a cell C which contains the name, age and

networth of, say 5 individuals.

>> C = {'Lucy', 7, 45000;

'Sally', 18, 150000;

'Martha', 64, 75000;

'Bob', 47, 200000;

'Ed', 36, 0};

The following command gives the average net worth of all individuals:

>> mean(cell2mat(C(:,3)))

ans =

 94000

The following one gives the number of individuals who are above 20 years old and have net worth

exceeding ú50000:

>> length(find(cell2mat(C(:,2))>20 & cell2mat(C(:,3))>50000))

ans =

 2

(Note that the size of the class is irrelevant in the above commands.)

The most common use of a cell array is to hold lines of text. If they were all the same number of

characters they would fit in a char array; if not, we put each line in a separate cell, eg:

>> a = dir('m*')

a =

 14Ĭ1 struct array with fields:

 name

 folder

 date

 bytes

 isdir

 datenum

>> names = { a.name}'

names =

 14Ĭ1 cell array

 {'markov.mat' }

 {'markus.m' }

 {'matlab.mat' }

 {'max_hpmixed.eps' }

 {'mazas.m' }

 {'mesh_graded.eps' }

 {'mesh_nongraded.eps'}

 {'mich.m' }

 {'minimax.m' }

 {'mixedhp4th.mat' }

 {'movingBL.m' }

 {'mps1.asv' }

 {'mps1.m' }

 {'myclock.m' }

As a final example of the use of cells, we mention the capability of storing the various data

obtained by, e.g. the command bessel j :

>> help besselj

 besselj Bessel function of the first kind.

 J = besselj(NU,Z) is the Bessel function of the first kind, J_nu(Z).

 The order NU need not be an integer, but must be real.

 The argument Z can be complex. The result is real where Z is

positive.

 J = besselj(NU,Z,SCALE) returns a scaled J_nu(Z) specified by SCALE:

 0 - (default) is the same as besselj(NU,Z)

 1 - scales J_nu(Z) by exp(- abs(imag(Z)))

 Class support for inputs NU and Z:

 float: double, single

 See also airy, besselh, besseli, besselk, bessely.

It basically evaluates the Bessel function Jɜ(z), where ɜ is a number and z is the variable.

Suppose we want to get a handle on the first n Bessel functions, so that we could perhaps plot

them etc. If n is small, we may do this manually, but if n is large then the use of a cell could prove

efficient. Let us take n = 10, and define the (empty) cell C:

>> n = 10;

>> C = cell(n,1);

We also define a vector of 1001 points in, say [0, 20]:

>> z=linspace(0,20,1001);

Then we place in each position in C, one of the Bessel functions Jɜ(z), as follows:

>> for i=1:n

 C{i} = besselj(i,z);

 end

>> C

C =

 10Ĭ1 cell array

 {1Ĭ1001 double}

 {1Ĭ1001 double}

 {1Ĭ1001 double}

 {1Ĭ1001 double}

 {1Ĭ1001 double}

 {1Ĭ1001 double}

 {1Ĭ1001 double}

 {1Ĭ1001 double}

 {1Ĭ1001 double}

 {1Ĭ1001 double}

Letôs plot some of them:

>> plot(z,C{5},z,C{8},z,C{10})

>> xlabel('x')

>> ylabel('Bessel function J_{ \ nu} (z)')

>> legend(' \ nu = 5 ',' \ nu = 8 ',' \ nu = 10 ')

STRUCTURES

Structures is yet another way to group things together, similar to a database. We first mention the

commands cell2struct and struct2cell (get help on them).

We may define a structure, using the command struct . As an example, consider the following,

which defines a structure called point , with three fields x, y and c, with values 12, ï 8 , órô.

