Advanced
MATLAB

Christos Xenophontos

Department of Mathematics & Statistics
University of Cyprus

NOTES

The notes are separated into O0topisenstés,arenos des
meant to be a complete treatise on the subject, but rather a collection of useful information for
makingyour MATLAB experience morefficient. They are arranged in order, with the next topic

relying possibly on the previous one(s).

PREALLOCATION :

In order to avoid variables growing inside a loop, wegllecate:

For example:
» a = zeros(l, 100);
» for n=1:100

» res = % Very complex calculation %
» a(n) = res;
» end

> Variable a is only assigned new values. No new memory is
allocated

Usually, in a program this amountsimatializing the variables.

VECTORIZATION:

The most timeconsuming operation in MATLAB is performirigops . MATLAB offers
vectorization capabilities that allow us to avoid udowps . For example, consider

» a=rand(1,100);
» b=zeros(1l,100);
» for n=1:100

» if n==

» b(n)=a(n);

» else

» b(n)=a(n-1)+a(n);
» end

» end

which addsconsecutive terms in a random array of 100 entries. A mack efficient way of
doing the same thing is

» a=rand(1l,100);
» b=[0 a(l:end-1)]+a;

The commandind is quite useful when avoiding loops. It basically returns indices czerom
values and it can simplify cedFor example,

» x=rand(1,100);
» inds = find(x>0.4 & x<0.6);

inds contains the indices at which x has values between 0.4
and 0.6. This is what happens:
x>0.4 returns a vector with 1 where true and 0 where false
x<0.6 returns a similar vector
& combines the two vectors using logical and operator
find returns the indices of the 1's

As another example, l&t= sin(linspace(0,10*pi,100))
positive?

. Howmany of the entries are

Using a loop and if/else
count=0;
for n=1:length(x)
if x(n)>0
count=count+1;
end
end

Being more clever
count=length(find(x>0));

Is there a better way?!

length(x) | Loop time | Find time
100 0.01 0
10,000 0.1 0
100,000 0.22 0
1,000,000 1.5 0.04

This code computes the sine of 1,001 values ranging from 0 to 1

i=a;
for £ = @:.81:18
i=1+1;

y(i) = sin(t);
end

This is a vectorized version of the same code:

t
¥

g:.81l:18;
sin(t);

This code computes the cumulative sum of a vector at every fitth element:

x = 1:18668;
ylength = (length{x} - mod{length(x),5))/5;
y(1l:ylength) = 8;
for n= 5:5:length(x)
y(n/5) = sum(x{l:n});
end

Using vectorization, you can write a much more concise MATLAB process. This code shows one way to accomplish the task:

x = 1:18668;
KSUMS = cumsumix);

y = xsums(5:5:length(x));

Rememberavoid loopswheneveipossible.

SPARSE MATRICES

When a matri x c¢ont athespsrsermatextcapgbilitkHos MATEABe use of

recommended~or example,

M_full = magic(1100); % Create 1100 -by-1100 6 ma g i madrix.
M_full(M_full > 50) = 0; % Set elements >50 to zero.
M_sparse = sparse(M_full); % Create sparse matrix of same.
whos
Name Size Bytes Class Attributes
M_full 1100x1100 9680000 double
M_sparse 1100x1100 9608 double sparse

So a sparse matrix uses less resources and it shousgtevhenever possiblespecially for very

large matrices.

The basic syntax is:

S = sparse(m, n) T creates an m by n zero sparse matrix

S =sparse(A) T converts full matrix into sparse form
(Seehelp sparse for more uses.)

As an example, we considéret matrix

Rnan'
-1

-1 4

N\ C/_C\/ c/ &

which appearf the discretization of differential equatiofi$ie sizen of D depends on the

discretization parameters, but it is usually large, @(§0°) . Letds see

how to

MATLABGsSs spar se capabiDinan effeient veayfal saghe 10000. dhet h e

number of nofeero elements iD is given byn+ 2(n1 1) =i 2. Wet h e n

for annl nsparse matrix witlfat most)3ni 2 nonzero entriesis follows

>>n=1000 O;
>> D = spalloc(n,n,3*n -2);

Typehelp spalloc for more information.

Next, we insert the nemero elements usingvell, a loop:

>> (1,1) = 1;
>> D(n,n) = 1;
>> for i=2:n -1
O(i,i) = 2;
DGii -1)= -1
D(i,i+1) = -1;
end

>>whos D
Name Size Bytes Class Attributes

D 10000x10000 559976 double sparse

If the matrix was not defined as sparse, tli@above result would have been

>>whos D
Name Size Bytes Class Attributes
D 10000x10000 800000000 double

As another example, we consider the matrix

6 al

O6cate

q

I

r

®
O
S}

é u
gl D U
A:é L:IRZnZn'
é u
é b -y
g -1 D H
where
R ed -1 o
1= Jr"",D €) LA
¢ 13 - Y
€ . g 1 4y

This matrix appears in the discretization of partial differential equatiorss, we note that

& 0 8D - |
A:g ,whereB:g f
g0 B el D

Suppose the size bandD isnl nand ofAis 2mn 1 2mn, for somem andn. Using the matrixD

we have already defined, we have

>n =10, m= 4, A=];
>>| = eye(n);
>> B:[D1 _I, _IlD],
>> fori=1l:m, A= blkdiag(A, B); end
>> whos A
Name Size Bytes Class Attributes
A 80000x80000 5759496 double sparse
>>spy(A)
x10*

When a sparse matrix is used in the solution of a linear syskerb, using the O0back
command, x=A \ b, MATLAB detects and takes advantage ¢by using the mostppropriate

linear solver.

LOGICAL ARRAYS

A logical arrayof 1 (true) and 0O (false) values is returned as a result of applying logical operators
to arrays, e.g.,

>>a=[40 -270]

a=
4 0 -2 7 0

>>a>0

ans =

115 logical array
10010

> g==7

ans =

115 logical array
00010

>>a~=0

ans =

115 logical array
10110

>>(a>=0)&(a<=4)

an

—c 1l

S

115 I ogi cal array
11001

>>(@<0)|(a>4)

an

—c 1l

S
115 I ogi cal array
00110

>>~((a<0)| (a>4)

an

—c 1l

s
115 | ogical array

11001

A logical array may be used just like an index array to select and change the elements of an array,
e.g.,
>> a(a>0)

ans =
4 7

>>a(a==7)=8

a=
4 0 -2 8 0

>>a(@a~=0)=a(@a~=0)+1

a=

MULTIDIMENSIONAL ARRAYS

We are mostly used to working with tvdimensional arrays (or matrices), but MATLAB allows
us todefine arrays whose entries are arrays themselves, thus creating-dimerfisional array.

Every value and variabig anarray and has a size:

>> a = 3;
> x=[5671];
> A=[123; 456];
>> whos
Name Size Bytes Class Attributes
a 1x1 8 double
X 1x3 24 double
A 2x3 48 double

A scalar is a @limensional array, a vector is alimensional array and a matrix is @nensional
arrayé ¢ o n c eép in practice tlgey are all twdimensional.

Array concatenation:

m horizontal:

>> [a, a]
ans =
3 3
>> horzcat(a, a, a)
ans =
3 3 3
m vertical:
>> [x; x]
ans =
5 6 7
5 6 7
>> vertcat(x, X, X)
ans =
5 6 Il
5 6 Il
5 6 Il

Universal function
cat (di mension, argument1, &, argument N)

m vertical:
>> cat(1l, A, 2x%A)
ans =
1 2 3
4 5 6
2 4 6
8 10 12

m horizontal:
>> cat(2, A, 2*A)
ans =
1 2 3 2 4 6
5 6 8 10 12

If we use Jor the dimensionthen we construct admensional array

>> X = cat(3, A, 2*%A);

>> X

X(:,:,1) =
1 2 3
4 5 6
X(:,:,2) =
2 4 6

8 10 12
It has three indices:

>> X(2,2,2)
ans =
10

m Xis now a 3-dimensional array:
>> ndims (X)
ans =
3

>> size(X)

ans =
2 3 2
>> whos X
Name Size Bytes Class Attributes
X 2x3x2 96 double

m arrays can have an arbitratily high numer of dimensions

0 sixe

CELL S AND CELL ARRAYS

A cellis a universal type that can hold anything:

> a=9{51}7
a =
(5]
>b={[12; 34] }
b =
[2x2 double]
>> whos
Name Size Bytes Class Attributes
a 1x1 68 cell
b 1x1 92 cell

m ais asingle cell (1x1 cell) holding a scalar (1x1 double)
m bis asingle cell (1x1 cell) holding a matrix (2x2 double)

We can also haveell arrays
>»>x={1, 2, 3, 4}
x =
[1] [2] [3] [4]
>A={123; 456}
A =
[1] [2] [3]
[4] [5] (6]
>> whos A x
Name Size Bytes Class Attributes
A 2x3 408 cell
X 1x4 272 cell

1 by 4 vector and 2 by 3 matrix, each cell containing a scalar.

m it can contain anything, really:
> y=4{12, [4 56], [t 2; 3 4], true, 'hi' }
y:
[12] [1x3 double] [2x2 double] [1] 'hi'

>> whos y
Name Size Bytes Class Attributes
y 1x5 369 cell

m even cell arrays:
>z={4{561}}
z =

[4] {1x2 cell}

m cell function creates an empty cell array:
>> cell(2)

ans =
(] (]
(] (]
>> cell(2, 4)
ans =

[] [] [] []
[] [] [] []
>> cell([1, 5])
ans =

[] [] [] [] []

m it behaves exactly like zeros function

m example:
>y =912, [4 5 6], [1 2; 3 4], true, 'hi' }

m e can access elements by indexing with { and }:

>> y{1}
ans =

12
>> y{2}
ans =

4 5 6
>> y{4}
ans =

1
>> y{5}
ans =
hi

m actually, we can also use indexing with (and):

>> A = y(3)
A =
[2x2 double]
>> whos A
Name Size Bytes Class Attributes
A 1x1 92 cell

m but what we get is a cell
m indexing with { and } returns the content of the cell

m cell arrays are just arrays, so we can slice:
> X={1[23] [456; 789] 01}

X =
[1] [1x2 double] [2x3 doublel] [0]
>> X(1:2)
ans =
[1] [1x2 double]
m and concatenate: m and delete:
> Y = [X(1:2) X(4)] >> X(3) =[]
Y = X =
[1] [1x2 double] [0] [1] [1x2 double] [0]

m celldisp describes a cell array:
>> C = { 'Hello' 15; [1 2; 3 4] { 3} }:
>> C{2,3} = true;
>> celldisp(C)
c{1,1} =
Hello
c{2,1}
1
3 4
c{1,2}
15
Cc{2,2}{1} =
3
Cc{1,3} =
[]
c{2,3} =
1

pO

m cellplot displays it graphically ('legend' is optional):
>> cellplot(C, 'legend')

other

structure

sparse

char

double

There are also the commandsti2mat, mat2cell , numZ2cell

>> help cell2mat
cellzmat Convert the contents of a cell array into a single matrix.

M = cell2mat(C) converts a multidimensional cell array with contents of
the same data type into a single matrix. The contents of C must be able
to concatenate into a hyperrectangle. Moreover, for each pair of
neighboring cells, the dimensions of the cell's contents must match,
excluding the dimension in which t he cells are neighbors. This constraint
must hold true for neighboring cells along all of the cell array's
dimensions.

The dimensionality of M, i.e. the number of dimensions of M, will match
the highest dimensionality contained in the cel | array.

cell2mat is not supported for cell arrays containing cell arrays or
objects.

Example:
C={[1][234];[5;9][678;10 11 12]};
M = cell2mat(C)

See also mat2cell, num2cell

As an example, let us consider the following: we define aCcethich contains the name, age and

networth of, say 5 individuals.

>> C = {'Lucy', 7, 45000;
'Sally', 18, 150000;
'Martha', 64, 75000;
'‘Bob’, 47, 200000;

'Ed', 36, 0};

The following commandgjives the average net worth of all individuals:

>> mean(cell2mat(C(:,3)))
ans =
94000

The following one gives the number of individuals who are above 20 years old and have net worth

exceeding 050000:

>> |ength(find(cell2mat(C(:,2))>20 & cellzmat(C(:,3))>50000))

ans =

(Note that thesize of the classs irrelevantin the above commands.)

The most common use of a cell array is to hold lines of tetteyfwere all the same number of

characters they would fit in a char array; if not, we put each line in a separate cell, eg:

>>a = dir('m*')
a=
1471 struct array with fields:

name
folder
date
bytes
isdir
datenum

>>names ={ a.name}

names =
1411 cell array
{'markov.mat' }
{'markus.m’ }
{'matlab.mat’ }

{'max_hpmixed.eps' }
{mazas.m' }
{'mesh_graded.eps' }
{'mesh_nongraded.eps'}
{'mich.m’ }
{'minimax.m'’ }
{'mixedhp4th.mat' }
{'movingBL.m' }

{mpsl.asv' }
{mpsl.m’ }
{'myclock.m’ }

As afinal exampleof the use of cells, we mention tbapability ofstoring the various data

obtained by, e.ghe commandbessel | :

>> help besselj
besselj Bessel function of the first kind.
J = besselj(NU,Z2) is the Bessel function of the first kind, J_nu(2).
The order NU need not be an integer, but must be real.
The argument Z can be complex. The result is real where Z is
positive.

J = besselj(NU,Z,SCALE) returns a scaled J_nu(Z) specified by SCALE:
0 - (default) is the same as besselj(NU,Z)
1 - scales J_nu(Z) by exp(- abs(imag(2)))

Class support for inputs NU and Z:
float: double, single

See also airy, besselh, besseli, besselk, bessely.

It basically evaluates the Bessel functz), wheres is a number andis the variable.

Suppose we want to get a handle on thefiBéssel functions, so that we could perhaps plot
them etclf nis small, we may do this manually, butifs large then the use of a cell could prove
efficient Let us taken = 10, and define the (empty) cél

>>n = 10;
>> C = cell(n,1);

We also define a vector @D01points in, say [0, 20]:

>> z=linspace(0,20,1001);

Then we place in each position@) one of the Bessel functiodgz), as follows:

>> for i=1:n
C{i} = besselj(i,2);

end

>>C

1011 cell array
{17 1001 doubl e}
{17 1001 doubl e}
{17 1001 doubl e}
{17 1001 doubl e}
{17T1001 doubl e}
{17T1001 doubl e}
{17T1001 doubl e}

{17 1001 doubl e}
{17 1001 doubl e}
{17 1001 doubl e}

Letds plot some of t hem:

>> plot(z,C{5},z,C{8},z,C{10})

>> xlabel('x")
>> ylabel('Bessel function J_{ \ nu} (2))
>> legend(' \nu=5" \nu=8" \nu=10"
04 T T T T T T
v=5
v=28
v=10]|"

o
N
T

o
—_

Bessel function JV (2)

g

_03 1 | | |
0 2 4 6 8 10 12 14 16 18 20

STRUCTURES

Structures is yet another way to group things togetheilar to adatabaseWe first mention the

commandsgell2struct and struct2cell (get help on them).

m astructure consists of (multiple) fields
m each field has a name and a value

m name must be a valid identifier (cf. variable names)
W values of different fields may have different types

m example of a structure:

>> s
s =
name: 'John Doe'
age: 24
height: 173
weight: 76

m fields can be accessed with the dot operator .:

>> s.age
ans =
24
>> s.name = 'David Smith'
g =
name: 'David Smith'
age: 24
height: 173
weight: 76

m if the field does not exist, it is added:

>> s.rank = 'captain'
s =
name: 'David Smith'
age: 41
height: 173
weight: 76

rank: 'captain'

We may define a structure, using the commstndt . As an example, consider the following,

which defines a structulledpoint , with three fieldsx, y andc, with values 12/ 8 , o6r 6.

>> point = struct('x', 12, 'y', -8, 'c', 'r')

point =
x: 12
y: -8

