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NOTES 
 

 

 

The notes are separated into ótopicsô, as described by their title in bold capitals. These notes are not 

meant to be a complete treatise on the subject, but rather a collection of useful information for 

making your MATLAB experience more efficient. They are arranged in order, with the next topic 

relying possibly on the previous one(s). 

 

 

PREALLOCATION : 

 

In order to avoid variables growing inside a loop, we pre-allocate: 

 

 
Usually, in a program this amounts to initializing the variables. 

 

 

VECTORIZATION:  

 

The most time-consuming operation in MATLAB is performing loops . MATLAB offers 

vectorization capabilities that allow us to avoid using loops . For example, consider 

 

 
 

which adds consecutive terms in a random array of 100 entries. A much more efficient way of 

doing the same thing is 

 

 
 

The command find  is quite useful when avoiding loops. It basically returns indices of non-zero 

values and it can simplify code. For example, 



 

 

 

 
 

As another example, let x = sin(linspace(0,10*pi,100)) . How many of the entries are 

positive? 

 

 
 

 
 

 
 

 

 



 

 
 

 

 

 
 

Remember: avoid loops, whenever possible. 

 

 

SPARSE MATRICES 

 

When a matrix contains mostly 0ôs, the use of the sparse matrix capabilities of MATLAB is 

recommended. For example,  

 
M_full  = magic(1100);          % Create 1100 - by - 1100 ómagicô matrix.  

M_full(M_full > 50) = 0;       % Set elements >50 to zero.  

M_sparse = sparse(M_full);     % Create sparse matrix of same.  

 

whos 

  Name             Size                Bytes  Class     Attributes  

 

  M_full        1100x1100            9680000  double               

  M_sparse      1100x1100               9608  double    sparse   

 

So a sparse matrix uses less resources and it should be used whenever possible, especially for very 

large matrices. 

 

The basic syntax is: 



 

S = sparse(m, n)  ï creates an m by n zero sparse matrix 

S = sparse(A)  ï converts full matrix into sparse form 

 

(See help sparse  for more uses.) 

 

As an example, we consider the matrix 
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which appears in the discretization of differential equations. The size n of D depends on the 

discretization parameters, but it is usually large, e.g. O(105). Letôs see how to take advantage of 

MATLABôs sparse capabilities and define the matrix D in an efficient way, for say n = 10000. The 

number of non-zero elements in D is given by n + 2(n ï 1) = 3n ï 2.  We then óallocate memoryô 

for an n Ĭ n sparse matrix with (at most) 3n ï 2 non-zero entries as follows: 

 

>> n=1000 0;  

>> D = spalloc(n,n,3*n - 2);  

 

Type help spalloc  for more information.  

 

Next, we insert the non-zero elements using, well, a loop: 

 

>> D(1,1) = 1;  

>> D(n,n) = 1;  

>> for i=2:n - 1 

     D(i,i) = 2;  

     D(i,i - 1) = - 1;  

     D(i,i+1) = - 1;  

   end  

 

>> whos D  

  Name          Size                Bytes  Class     Attributes  

 

  D         10000x10000            559976  double    sparse     

 

If the matrix was not defined as sparse, then the above result would have been 

 

>> whos D  

  Name          Size                   Bytes  Class     Attributes  

 

  D         10000x10000            800000000  double               

 

As another example, we consider the matrix 
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This matrix appears in the discretization of partial differential equations. First, we note that 
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Suppose the size of I and D is n Ĭ n and of A is 2mn Ĭ 2mn, for some m and n. Using the matrix D 

we have already defined, we have 

 
>> n   = 10;  m = 4;  A = [];  

>> I  = eye(n);  

>> B = [D, - I; - I,D];  

>> for i=1:m, A = blkdiag( A, B); end  

>> whos A  

  Name          Size                 Bytes  Class     Attributes  

 

  A         80000x80000            5759496  double    sparse     

>> spy( A)  

 

 



 

When a sparse matrix is used in the solution of a linear system A x = b, using the óbackslashô 

command, x = A  \  b, MATLAB detects and takes advantage of it, by using the most appropriate 

linear solver. 

 

 

LOGICAL ARRAYS  

A logical array of 1 (true) and 0 (false) values is returned as a result of applying logical operators 

to arrays, e.g., 

 

>> a = [4 0 - 2 7 0]  

 

a =  

     4     0    - 2     7     0  

 

>> a > 0  

 

ans =  

  1Ĭ5 logical array 

 

   1   0   0   1   0  

 

>> a == 7  

 

ans =  

  1Ĭ5 logical array 

 

   0   0   0   1   0  

 

>> a ~= 0  

 

ans =  

  1Ĭ5 logical array 

 

   1   0   1   1   0  

 

>> (a >= 0) & (a <= 4)  

 

ans =  

  1Ĭ5 logical array 

 

   1   1   0   0   1  

 

>> (a < 0) | (a > 4)  

 

ans =  

  1Ĭ5 logical array 

 

   0   0   1   1   0  

 

>> ~((a < 0) | (a > 4))  



 
 

ans =  

  1Ĭ5 logical array 

 

   1   1   0   0   1  

 

A logical array may be used just like an index array to select and change the elements of an array, 

e.g., 

>> a(a>0)  

 

ans =  

     4     7  

 

>> a(a == 7) = 8  

 

a =  

     4     0    - 2     8     0  

 

>> a(a ~= 0) = a(a ~= 0) + 1  

 

a =  

     5     0    - 1     9     0  

 

MULTIDIMENSIONAL ARRAYS 

We are mostly used to working with two-dimensional arrays (or matrices), but MATLAB allows 

us to define arrays whose entries are arrays themselves, thus creating a multi-dimensional array. 

 

Every value and variable is an array and has a size: 

 

 

 

A scalar is a 0-dimensional array, a vector is a 1-dimensional array and a matrix is a 2-dimensional 

array é conceptually é in practice they are all two-dimensional. 

 

Array concatenation: 

 



 

 

 
 

Universal function 

cat(dimension,argument1,é,argumentN) 

 

 
 

 

 
 

If we use 3 for the dimension, then we construct a 3-dimensional array 

 

 
 



 

 
It has three indices: 
 

 
 

 
 

 
 

 
 

 

 



 

CELL S AND CELL ARRAYS 

A cell is a universal type that can hold anything: 

 

 
 

 
 

We can also have cell arrays: 

 
 

1 by 4 vector and 2 by 3 matrix, each cell containing a scalar. 

 

 

 



 

 
 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 



 

There are also the commands: cell2mat, mat2cell , num2cell .  

 

>> help cell2mat  

 cell2mat Convert the contents of a cell array into a single matrix.  

    M = cell2mat(C) converts a multidimensional cell array with contents of  

    the same data type into a single matrix. The contents of C must be able  

    to concatenate into a hyperrectangle. Moreover, for each pair of  

    neighboring cells, the dimensions of the cell's contents must match,  

    excluding the dimension in which t he cells are neighbors. This constraint  

    must hold true for neighboring cells along all of the cell array's  

    dimensions.  

  

    The dimensionality of M, i.e. the number of dimensions of M, will match  

    the highest dimensionality contained in the cel l array.  

  

    cell2mat is not supported for cell arrays containing cell arrays or  

    objects.  

  

  Example:  

     C = {[1] [2 3 4]; [5; 9] [6 7 8; 10 11 12]};  

     M = cell2mat(C)  

  

  See also mat2cell, num2cell  

 

As an example, let us consider the following: we define a cell C which contains the name, age and 

networth of, say 5 individuals. 

 

>> C = {'Lucy', 7, 45000;  

'Sally', 18, 150000;  

'Martha', 64, 75000;  

'Bob', 47, 200000;  

'Ed', 36, 0};  

 

The following command gives the average net worth of all individuals: 

 

>> mean(cell2mat(C(:,3)))  

ans =  

       94000  

 

The following one gives the number of individuals who are above 20 years old and have net worth 

exceeding ú50000: 

 



 
>> length(find(cell2mat(C(:,2))>20 & cell2mat(C(:,3))>50000))  

 

ans =  

     2 

 

(Note that the size of the class is irrelevant in the above commands.) 

 

The most common use of a cell array is to hold lines of text. If they were all the same number of 

characters they would fit in a char array; if not, we put each line in a separate cell, eg: 

 

>> a = dir('m*')  

a =  

  14Ĭ1 struct array with fields: 

 

    name 

    folder  

    date  

    bytes  

    isdir  

    datenum  

 

>> names = { a.name}'  

names =  

  14Ĭ1 cell array 

    {'markov.mat'        }  

    {'markus.m'          }  

    {'matlab.mat'        }  

    {'max_hpmixed.eps'   }  

    {'mazas.m'           }  

    {'mesh_graded.eps'   }  

    {'mesh_nongraded.eps'}  

    {'mich.m'            }  

    {'minimax.m'         }  

    {'mixedhp4th.mat'    }  

    {'movingBL.m'        }  

    {'mps1.asv'          }  

    {'mps1.m'            }  

    {'myclock.m'         }  

As a final example of the use of cells, we mention the capability of storing the various data 

obtained by, e.g. the command bessel j : 



 

 

>> help besselj  

 besselj Bessel function of the first kind.  

    J = besselj(NU,Z) is the Bessel function of the first kind, J_nu(Z).  

    The order NU need not be an integer, but must be real.  

    The argument Z can be complex.  The result is real where Z is 

positive.  

  

    J = besselj(NU,Z,SCALE) returns a scaled J_nu(Z) specified by SCALE:  

        0 -  (default) is the same as besselj(NU,Z)  

        1 -   scales J_nu(Z) by exp( - abs(imag(Z)))  

  

    Class support for inputs NU and Z:  

       float: double, single  

  

    See also airy, besselh, besseli, besselk, bessely.  

 

It basically evaluates the Bessel function Jɜ(z), where ɜ is a number and z is the variable.  

 

Suppose we want to get a handle on the first n Bessel functions, so that we could perhaps plot 

them etc. If n is small, we may do this manually, but if n is large then the use of a cell could prove 

efficient. Let us take n = 10, and define the (empty) cell C: 

 

>> n = 10;  

>> C = cell(n,1);  

 

We also define a vector of 1001 points in, say [0, 20]: 

 

>> z=linspace(0,20,1001);  

 

Then we place in each position in C, one of the Bessel functions Jɜ(z), as follows: 

 

>> for i=1:n  

     C{i} = besselj(i,z);  

   end  

>> C  

 

C =  

  10Ĭ1 cell array 

 

    {1Ĭ1001 double} 

    {1Ĭ1001 double} 

    {1Ĭ1001 double} 

    {1Ĭ1001 double} 

    {1Ĭ1001 double} 

    {1Ĭ1001 double} 

    {1Ĭ1001 double} 



 
    {1Ĭ1001 double} 

    {1Ĭ1001 double} 

    {1Ĭ1001 double} 

 

Letôs plot some of them: 

 

>> plot(z,C{5},z,C{8},z,C{10})  

>> xlabel('x')  

>> ylabel('Bessel function J_{ \ nu} (z)')  

>> legend(' \ nu = 5 ',' \ nu = 8 ',' \ nu = 10 ')  

 

 
  

STRUCTURES 

Structures is yet another way to group things together, similar to a database. We first mention the 

commands cell2struct and struct2cell  (get help on them). 

 

 
 



 

 
 

 
 

 
 

We may define a structure, using the command struct . As an example, consider the following, 

which defines a structure called point , with three fields x, y and c, with values 12, ï 8 , órô. 

 

 
 



 

 
 

 
 

 

 


