CHRISTOS-RAENT ONTI
ΟΝΤΙ ΧΡΗΣΤΟΣ-ΡΑΕΝΤ
ONTI CHRISTOS-RAENT
...
ΕΠΙΣΚΕΠΤΗΣ ΛΕΚΤΟΡΑΣ
Τμήμα Μαθηματικών και Στατιστικής
ΘΕΕ 01 - Σχολή Θετικών και Εφαρμοσμένων Επιστημών
Πανεπιστημιούπολη
141
22892624
-
https://sites.google.com/view/cronti

Προσωπικό Προφίλ

 

Εκπαίδευση

  • (2018) Διδακτορικό στα Μαθηματικά, Τμήμα Μαθηματικών, Πανεπιστήμιο Ιωαννίνων, Ελλάδα (Επιβλέπων: Καθ. Θεόδωρος Βλάχος).
  • (2013) Μεταπτυχιακό στα Μαθηματικά, Τμήμα Μαθηματικών, Πανεπιστήμιο Ιωαννίνων, Ελλάδα.
  • (2010) Πτυχίο στα Μαθηματικά, Τμήμα Μαθηματικών, Πανεπιστήμιο Ιωαννίνων, Ελλάδα.

Προηγούμενες Θέσεις

  • (2018) Μεταδιδακτορική θέση, IMPA - Instituto de Matematica Pura e Aplicada, Ρίο ντε Τζανέιρο, Βραζιλία.
  • Διαφορική Γεωμετρία
  • Γεωμετρία υποπολυπτυγμάτων
  • Σχέση μεταξύ Γεωμετρίας και Τοπολογίας υποπολυπτυγμάτων
 
  • A class of Einstein submanifolds of Euclidean space (with M. Dajczer and Th. Vlachos), to appear in The Journal of Geometric Analysis
  • On constant curvature submanifolds of space forms (with M. Dajczer and Th. Vlachos), Differential Geom. Appl. https://doi.org/10.1016/j.difgeo.2021.101718
  • Isometric immersions with flat normal bundle between space forms (with M. Dajczer and Th. Vlachos), Arch. Math. (Basel). https://doi.org/10.1007/s00013-020-01565-x 
  • On complete conformally flat submanifolds with nullity in Euclidean space, Results Math 75, 106 (2020). https://doi.org/10.1007/s00025-020-01233-0
  • Classification of conformally flat isoparametric submanifolds of Euclidean space, Differential Geom. Appl. (2020). https://doi.org/10.1016/j.difgeo.2020.101611
  • Conformally flat submanifolds with flat normal bundle (with M. Dajczer and Th. Vlachos), Manuscripta Math. vol. 163, no. 3-4, pp. 407--426 (2020).
  • Topological obstructions for submanifolds in low codimension (with Th. Vlachos), Geom. Dedicata, vol. 196, no. 1, pp. 11--26 (2018).
  • Einstein submanifolds with flat normal bundle in space forms are holonomic (with M. Dajczer and Th. Vlachos), Proc. Amer. Math. Soc., vol. 146, no. 9, pp. 4035--4038 (2018).
  • Einstein submanifolds with parallel mean curvature, Arch. Math. (Basel), vol. 110, no. 5, pp. 523--531 (2018).
  • Almost conformally flat hypersurfaces (with Th. Vlachos), Illinois J. Math., vol. 61, no. 1-2, pp. 37--51 (2017).

Profile Information

Education
  • (2018) Ph.D. in Mathematics, Department of Mathematics, University of Ioannina, Greece (advisor: Prof. Theodoros Vlachos).
  • (2013) M.Sc. in Mathematics, Department of Mathematics, University of Ioannina, Greece.
  • (2010) B.Sc. in Mathematics, Department of Mathematics, University of Ioannina, Greece.
Previous Positions
  • (2018) Post-doc position, IMPA - Instituto de Matematica Pura e Aplicada, Rio de Janeiro, Brazil.
  • Differential geometry
  • Geometry of submanifolds
  • Interplay between Geometry and Topology of submanifolds.
 
  • A class of Einstein submanifolds of Euclidean space (with M. Dajczer and Th. Vlachos), to appear in The Journal of Geometric Analysis
  • On constant curvature submanifolds of space forms (with M. Dajczer and Th. Vlachos), Differential Geom. Appl. https://doi.org/10.1016/j.difgeo.2021.101718
  • Isometric immersions with flat normal bundle between space forms (with M. Dajczer and Th. Vlachos), Arch. Math. (Basel). https://doi.org/10.1007/s00013-020-01565-x 
  • On complete conformally flat submanifolds with nullity in Euclidean space, Results Math 75, 106 (2020). https://doi.org/10.1007/s00025-020-01233-0
  • Classification of conformally flat isoparametric submanifolds of Euclidean space, Differential Geom. Appl. (2020). https://doi.org/10.1016/j.difgeo.2020.101611
  • Conformally flat submanifolds with flat normal bundle (with M. Dajczer and Th. Vlachos), Manuscripta Math. vol. 163, no. 3-4, pp. 407--426 (2020).
  • Topological obstructions for submanifolds in low codimension (with Th. Vlachos), Geom. Dedicata, vol. 196, no. 1, pp. 11--26 (2018).
  • Einstein submanifolds with flat normal bundle in space forms are holonomic (with M. Dajczer and Th. Vlachos), Proc. Amer. Math. Soc., vol. 146, no. 9, pp. 4035--4038 (2018).
  • Einstein submanifolds with parallel mean curvature, Arch. Math. (Basel), vol. 110, no. 5, pp. 523--531 (2018).
  • Almost conformally flat hypersurfaces (with Th. Vlachos), Illinois J. Math., vol. 61, no. 1-2, pp. 37--51 (2017).