ΔΗΜΟΚΡΑΤΗΣ Γ.Ε. ΓΡΗΓΟΡΙΑΔΗΣ
ΓΡΗΓΟΡΙΑΔΗΣ ΔΗΜΟΚΡΑΤΗΣ
GRIGORIADIS DIMOKRATIS
...
ASSISTANT PROFESSOR
Department of Mechanical and Manufacturing Engineering
Green Park
91, Aglantzias Ave.
GP 109
22894453
22895383
ucy-compsci.org

Προσωπικό Προφίλ

‘Ελαβε το πτυχίο του Μηχανολόγου Μηχανικού από το Πανεπιστήμιο UMIST (Manchester, Αγγλία) και τη μεταπτυχιακή του ειδίκευση στην περιβαλλοντική και εφαρμοσμένη Ρευστοδυναμική από το Ινστιτούτο Ρευστοδυναμικής Von Karman (Βρυξέλλες, Βέλγιο).   Isosurfaces of pressure fluctuations over an fixed bed 
Από το 1996, εργάστηκε ως ερευνητής στο ερευνητικό κέντρο «ΔΗΜΟΚΡΙΤΟΣ» αρχικά στον τομέα της περιβαλλοντικής ρευστοδυναμικής και αργότερα στον τομέα της υπολογιστικής και πειραματικής πυρηνικής θερμο-υδραυλικής στον πυρηνικό αντιδραστήρα GRR-1 του κέντρου Πυρηνικού Αντιδραστήρα του Ινστιτούτου Πυρηνικής Τεχνολογίας και Ακτινοπροστασίας. Το 2003, απέκτησε το Διδακτορικό του δίπλωμα από το τμήμα Μηχανολόγων Μηχανικών του Αριστοτέλειου Πανεπιστήμιου Θεσσαλονίκης. Aπό το 2006 είναι μέλος της ερευνητικής ομάδας Ucy-CompSci, στο Τμήμα Μηχανικών Μηχανολογίας και Κατασκευαστικής του Πανεπιστημίου Κύπρου.

Τα ερευνητικά ενδιαφέροντά του περιλαμβάνουν τομείς όπως, περιβαλλοντική ρευστοδυναμική, τυρβώδεις ασυμπίεστες ροές κλασσικής υδροδυναμικής και μαγνητοϋδροδυναμικής (MHD),  

Ejection events and Lambda structure in an ascillatory flow... 

παλλόμενες και διφασικές ροές αερολυμάτων, ατμοσφαιρική διασπορά, ροές σε παράκτιες ζώνες. Τα τρέχοντα ερευνητικά του ενδιαφέροντα εστιάζονται στη μελέτη βασικών φαινομένων μεταφοράς μάζας και ενέργειας με χρήση προηγμένων και αποδοτικών προσομοιώσεων όπως η μέθοδος του εμβαπτισμένου ορίου σε προσομοιώσεις μεγάλων δινών (LES) και άμεσες αριθμητικές προσομοιώσεις (DNS).

 

J-1. G. Kolokythas,D.G.E. Grigoriadis, A. Dimas (2014), ”Dynamic Friction Angle/Coefficient in Formulas of Bed Load Transport Induced by Waves over Ripples”, under review, Journal of Hydraulic Engineering.

J-2.  E Kaloudis, D.G.E. Grigoriadis and E Papanicolaou (2016), "Numerical simulations of constant-influx gravity currents in confined spaces: Application to thermal storage tanks", International Journal of Thermal Sciences 108, 1-16, doi: 10.1016/j.ijthermalsci.2016.04.018.

J-3.  A.G. Mylonakis, M. Varvayanni, N. Catsaros, P. Savva, D.G.E. Grigoriadis (2014),  “Literature review in multi-physics and multi-scale methods used in nuclear reactor analysisAnnals of Nuclear Energy, vol. 72, pp 104–119 doi: 10.1016/j.anucene.2014.05.002.

J-4.  E. Kaloudis, D.G.E. Grigoriadis, E. Papanicolaouand T. Panidis (2014), “Large eddy simulation of thermocline flow phenomena and mixing during discharging of an initially homogeneous or stratified storage tank”, European Journal of Mechanics-B/Fluids, vol. 48, pp. 94-114, , doi: 10.1016/j.euromechflu.2014.04.012.

J-5.  E. Kaloudis, D.G.E. Grigoriadis, E. Papanicolaou and T. Panidis (2014). “Numerical simulations of turbulent mixed convection in the charging of a rectangular thermal storage tank”, International Journal of Heat and Fluid Flow, doi: 10.1016/j.ijheatfluidflow.2013.10.007.

J-6.  X. Albets-Chico, D.G.E. Grigoriadis, E.V. Votyakov, S. Kassinos (2013). "Direct numerical simulation of turbulent liquid metal flow entering a magnetic field", Fusion Engineering and Design, doi: 10.1016/j.fusengdes.2013.09.002.

J-7.  D.G.E. Grigoriadis, A. Dimas, E. Balaras (2013). Coherent structures in oscillating turbulent boundary layersover a fixed rippled bed”, Flow, Turbulence and Combustion, doi: 10.1007/s10494-013-9489-1.

J-8.  N. Kanaris, X. Albets, D.G.E. Grigoriadis, S.C. Kassinos (2013). “3D numerical simulations of MHD flow around a confined circular cylinder under low, moderate and strong magnetic fieldsPhysics of Fluids 23, Vol.25, Issue 7, 074102, doi: 10.1063/1.4811398.

J-9.  D.G.E. Grigoriadis, A. Dimas, E. Balaras (2012). Large-eddy simulation of wave turbulent boundary layer over rippled bed”, Journal of Coastal Engineering 60, pp. 174-189, doi: 10.1016/j.coastaleng.2011.10.003.

J-10. N. Kanaris, D.G.E.  Grigoriadis, S. C. Kassinos (2011). “Three dimensional flow around a circular cylinder confined in a plane channelPhysics of Fluids 23, 064106, doi: 10.1063/1.3599703.

J-11. I.E. Sarris, D.G.E. Grigoriadis, N.S. Vlachos (2010). Laminar Free Convection in a Square Enclosure Driven By the Lorentz ForceInternational Journal of Numerical Heat Transfer, Part A: Applications, vol. 58: 12, pp. 923–942, doi: 10.1080/10407782.2010.529034.

J-12. D.G.E. Grigoriadis, I. Sarris, S. Kassinos (2010). MHD flow past a circular cylinder using the immersed boundary methodComputers & Fluids, vol.39, pp. 345–358, doi: 10.1016/j.compfluid.2009.09.012. 

J-13.  D.G.E. Grigoriadis, S.C. Kassinos, E. Votyakov (2009), Immersed boundary method for the MHD flows of liquid metals, Journal of Computational physics, vol. 228, Issue 3, Feb. 2009, pp. 903-920, doi: 10.1016/j.jcp.2008.10.017.

J-14.  D.G.E. Grigoriadis, S. C. Kassinos (2009), Lagrangian particle dispersion in turbulent flow over a wall mounted obstacleInternational Journal of Heat and Fluid Flow, vol. 30, Issue 2, June 2009, pp.462-470, doi: 10.1016/j.ijheatfluidflow.2009.01.010.

J-15.  D.G.E. Grigoriadis, A. Dimas, E. Balaras (2009). Large-eddy simulations of unidirectional water flow over dunesJournal of Geophysical Research, (E) Earth Science, 114, F02022, doi: 10.1029/2008JF001014.

J-16.  D.G.E. Grigoriadis, J.G. Bartzis, A. Goulas (2004), Efficient Treatment of Complex Geometries for Large Eddy Simulations of Turbulent Flows, Computers and Fluids, vol. 33, pp. 201-222, doi: 10.1016/S0045-7930(03)00038-0.

J-17.  D.G.E. Grigoriadis, J.G. Bartzis, A. Goulas (2003), LES of the flow past a rectangular cylinder using the immersed boundary conceptInternational Journal for Numerical Methods in Fluids, vol. 41, issue 6, pp. 615-632, doi: 10.1002/fld.458.

J-18.  A. Robins, E. Savory, A. Scaperdas D. Grigoriadis (2002), Spatial variability and source-receptor relations at a street intersection, Journal of water, Air and Soil Pollution Focus, vol. 2, pp. 381-393, doi: 10.1023/A:1021360007010.

J-19.  S. Andronopoulos, D. Grigoriadis, A. Robins, A. Venetsanos, S. Rafailidis, J. G. Bartzis (2001), Three-dimensional modelling of concentration fluctuations in complicated geometry”, Environmental Fluid Mechanics, vol. 1, pp. 415-440, doi: 10.1023/A:1015705615846.

Profile Information

Dr. Dimokratis Grigoriadis received his B.Sc. (1995) in Mechanical Engineering at UMIST (Manchester, UK) and his M.Sc. (1996) in Environmental and applied Fluid Dynamics from the Von Karman Institute for Fluid Dynamics (Belgium). In 1996 he joined the National Research Center  Isosurfaces of pressure fluctuations over an fixed bed 
“Demokritos” (Greece) initially working on environmental flows and later on computational and experimental nuclear thermal-hydraulics at the GRR-1 reactor. Received his PhD (2003) in Mechanical Engineering from the Aristotle University of Thessaloniki (Greece) on “Large Eddy simulations of turbulent flows in complicated geometries”. He joined the university of Cyprus in 2006 as member of the Ucy-CompSci group. 

His research interests include environmental fluid dynamics, incompressible turbulent flows in classical hydrodynamics and magnetohydrodynamics (MHD), oscillating and pulsating turbulent flows, multiphase flows and atmospheric dispersion, flows in coastal regions, 

Ejection events and Lambda structure in an ascillatory flow... 

Heat transfer and storage in turbulent flows. His current research interests focus on basic heat and mass transport phenomena using advanced and efficient numerical techniques such as the immersed boundary method for Large Eddy Simulations (LES) and Direct Numerical Simulations (DNS).

 
 
 

J-1. G. Kolokythas,D.G.E. Grigoriadis, A. Dimas (2014), ”Dynamic Friction Angle/Coefficient in Formulas of Bed Load Transport Induced by Waves over Ripples”, under review, Journal of Hydraulic Engineering.

J-2.  E Kaloudis, D.G.E. Grigoriadis and E Papanicolaou (2016), "Numerical simulations of constant-influx gravity currents in confined spaces: Application to thermal storage tanks", International Journal of Thermal Sciences 108, 1-16, doi: 10.1016/j.ijthermalsci.2016.04.018.

J-3.  A.G. Mylonakis, M. Varvayanni, N. Catsaros, P. Savva, D.G.E. Grigoriadis (2014),  “Literature review in multi-physics and multi-scale methods used in nuclear reactor analysisAnnals of Nuclear Energy, vol. 72, pp 104–119 doi: 10.1016/j.anucene.2014.05.002.

J-4.  E. Kaloudis, D.G.E. Grigoriadis, E. Papanicolaouand T. Panidis (2014), “Large eddy simulation of thermocline flow phenomena and mixing during discharging of an initially homogeneous or stratified storage tank”, European Journal of Mechanics-B/Fluids, vol. 48, pp. 94-114, , doi: 10.1016/j.euromechflu.2014.04.012.

J-5.  E. Kaloudis, D.G.E. Grigoriadis, E. Papanicolaou and T. Panidis (2014). “Numerical simulations of turbulent mixed convection in the charging of a rectangular thermal storage tank”, International Journal of Heat and Fluid Flow, doi: 10.1016/j.ijheatfluidflow.2013.10.007.

J-6.  X. Albets-Chico, D.G.E. Grigoriadis, E.V. Votyakov, S. Kassinos (2013). "Direct numerical simulation of turbulent liquid metal flow entering a magnetic field", Fusion Engineering and Design, doi: 10.1016/j.fusengdes.2013.09.002.

J-7.  D.G.E. Grigoriadis, A. Dimas, E. Balaras (2013). Coherent structures in oscillating turbulent boundary layersover a fixed rippled bed”, Flow, Turbulence and Combustion, doi: 10.1007/s10494-013-9489-1.

J-8.  N. Kanaris, X. Albets, D.G.E. Grigoriadis, S.C. Kassinos (2013). “3D numerical simulations of MHD flow around a confined circular cylinder under low, moderate and strong magnetic fieldsPhysics of Fluids 23, Vol.25, Issue 7, 074102, doi: 10.1063/1.4811398.

J-9.  D.G.E. Grigoriadis, A. Dimas, E. Balaras (2012). Large-eddy simulation of wave turbulent boundary layer over rippled bed”, Journal of Coastal Engineering 60, pp. 174-189, doi: 10.1016/j.coastaleng.2011.10.003.

J-10. N. Kanaris, D.G.E.  Grigoriadis, S. C. Kassinos (2011). “Three dimensional flow around a circular cylinder confined in a plane channelPhysics of Fluids 23, 064106, doi: 10.1063/1.3599703.

J-11. I.E. Sarris, D.G.E. Grigoriadis, N.S. Vlachos (2010). Laminar Free Convection in a Square Enclosure Driven By the Lorentz ForceInternational Journal of Numerical Heat Transfer, Part A: Applications, vol. 58: 12, pp. 923–942, doi: 10.1080/10407782.2010.529034.

J-12. D.G.E. Grigoriadis, I. Sarris, S. Kassinos (2010). MHD flow past a circular cylinder using the immersed boundary methodComputers & Fluids, vol.39, pp. 345–358, doi: 10.1016/j.compfluid.2009.09.012. 

J-13.  D.G.E. Grigoriadis, S.C. Kassinos, E. Votyakov (2009), Immersed boundary method for the MHD flows of liquid metals, Journal of Computational physics, vol. 228, Issue 3, Feb. 2009, pp. 903-920, doi: 10.1016/j.jcp.2008.10.017.

J-14.  D.G.E. Grigoriadis, S. C. Kassinos (2009), Lagrangian particle dispersion in turbulent flow over a wall mounted obstacleInternational Journal of Heat and Fluid Flow, vol. 30, Issue 2, June 2009, pp.462-470, doi: 10.1016/j.ijheatfluidflow.2009.01.010.

J-15.  D.G.E. Grigoriadis, A. Dimas, E. Balaras (2009). Large-eddy simulations of unidirectional water flow over dunesJournal of Geophysical Research, (E) Earth Science, 114, F02022, doi: 10.1029/2008JF001014.

J-16.  D.G.E. Grigoriadis, J.G. Bartzis, A. Goulas (2004), Efficient Treatment of Complex Geometries for Large Eddy Simulations of Turbulent Flows, Computers and Fluids, vol. 33, pp. 201-222, doi: 10.1016/S0045-7930(03)00038-0.

J-17.  D.G.E. Grigoriadis, J.G. Bartzis, A. Goulas (2003), LES of the flow past a rectangular cylinder using the immersed boundary conceptInternational Journal for Numerical Methods in Fluids, vol. 41, issue 6, pp. 615-632, doi: 10.1002/fld.458.

J-18.  A. Robins, E. Savory, A. Scaperdas D. Grigoriadis (2002), Spatial variability and source-receptor relations at a street intersection, Journal of water, Air and Soil Pollution Focus, vol. 2, pp. 381-393, doi: 10.1023/A:1021360007010.

J-19.  S. Andronopoulos, D. Grigoriadis, A. Robins, A. Venetsanos, S. Rafailidis, J. G. Bartzis (2001), Three-dimensional modelling of concentration fluctuations in complicated geometry”, Environmental Fluid Mechanics, vol. 1, pp. 415-440, doi: 10.1023/A:1015705615846.