ΑΛΕΚΟΣ ΒΙΔΡΑΣ
ΒΙΔΡΑΣ ΑΛΕΚΟΣ
VIDRAS ALEKOS
...
PROFESSOR
Department of Mathematics and Statistics
FST 01 - Faculty of Pure and Applied Sciences
University Campus
-
22892645
22892601
-

Προσωπικό Προφίλ

Πτυχιο Μαθηματικων, Πανεπ. Αθηνων (1986), Ελλας.Διδακτορικο στα Μαθηματικα, Univ. of Maryland, College Park (1992), USA.Μεταδιδακτορικες θεσεις στο RIMS, Kyoto University, Japan (1992-1993), στο University of Rome(La Sapienza), Italy, University of Bordeaux,France (1993-1994). Λεκτορας (Π.Κ), 1994-1997, Επ.Καθ. (Π.Κ),1997-2002, Αν.Καθ.(Π.Κ), 2002-2009,Καθηγητης (Π.Κ) απο τον Μαρτιο του 2009.

Μιγαδικη Αναλυση. Ειδικοτερα, Ακεραιες συναρτησεις, κλασεις ολομορφων συναρτησεων που αναπαριστανται με ολοκληρωτικο τυπο του Καρλεμαν.Θεωρια υπολοιπων στις πολλες μιγαδικες μεταβλητες.

1) A.Vidras and A.Yger: `On Asymptotic approximations of the residual currents', Trans. Amer. Math. Soc., vol.350, no.10, p.4105-4125, 1998.2) L.Aizenberg, A.Tumanov and A.Vidras : `The class of holomorphic functions representable by Carleman's formula', Annal. Scuola Norm. Sup. Pisa Cl.Sci.(4), vol.27, no.1, p.93-105, 1998.3) A.Vidras: `Local Residues and discrete sets of uniqueness', Complex Variables and Applications , vol.40, no.1, p.63-92, 1999.4) L.Aizenberg and A.Vidras: `On small complete sets of functions ', Canadian Journal of Mathematics, vol.52, no.1, p.3-31, 2000.5) A.Vidras and A.Yger: `On some generalizations of Jacobi's Residue formula ', Ann. Scient. Ecol. Norm. Sup. (Paris), vol.34, no.1, p. 131-157, 2001. 6) L.Aizenberg and A.Vidras: `Bohr radius for some classes of analytic functions ', Sib. Math. Journ., vol.45, no.1, p.606-617, 2004. 7) C.Berenstein, A.Vidras and A.Yger:`Analyticresidues along algebraic cycles'. Journal of Complexity, vol.21, no1, p.5-42, 2005. vol. 310, p.657-672, 2005. 8) L.Aizenberg and A.Vidras: `On a classof holomorphic functions representable by Carleman formulas in thedisk from their values on the arc of the circle', Mathematische Nachrichten, vol.280, no.1-2, p.4-19, 2007. 9) A.Vidras: `Reconstructing holomorphic functions in a domain fromtheir values on a part of its boundary,'Contemporary Mathematics 455(2008), p.393-410. 10) L.Aizenberg, V. Gotlib, A.Vidras: `Bohr and Rogosinski abscissa for ordinary Dirichlet series'. CMFT,  vol.9(1), p.65-74, 2009. 11) A.Vidras, A.Yger: `Collef-Herrera Currents Revisited', The Mathematical Legacy of Leon Ehrenpreis . Springer Proceedings in Mathematics 16, p.327-352. Spinger Verlag 2012. 12) L.Aizenberg, A.Vidras: `Duality and the class of holomorphic functions representable by Carleman formula.' Complex analysis and dynamical systems V, 1–24, Contemp. Math., 591, Amer. Math. Soc., Providence, RI, 2013. 13) L.Aizenberg, V.Gotlieb and A.Vidras : `Duality for Hardy spaces in domains of $\bf{C}^n$ and some applications', Complex Anal. Oper. Theory 8 (2014), no. 6, 1341–136626p.  14) L.Aizenebrg, E.Liflyand, A.Vidras: `Hausdorff operators in Hardy spaces on some domains in $\bf{C} ^n$'. Complex analysis and dynamical systems VI. Part 2, 27–46, Contemp. Math., 667, Amer. Math. Soc., Providence, RI, 2016.15) A.Vidras, A.Yger: `Brinacon-Skoda Theorem for quotient ring'. Complex analysis and dynamical systems VI. Part 2, 253–278, Contemp. Math., 667, Amer. Math. Soc., Providence, RI, 2016.

Profile Information

B.S in Mathematics (1986), Univ. of Athens, Greece. Ph.D in Mathematics (1992), Univ. of Maryland, College Park, USA Postodoctoral position at RIMS, Kyoto University(1992-1993), Japan. Posdocoral positions at University of Rome(La Sapienza), Italy and at University of Bordeaux, France (1993-1994). Lecturer (UCY) 1994-1997. Asst. Prof. (UCY), 1997-2002. Assoc. Prof. (UCY), 2002-2009. Professor (UCY), since March, 2009.

Complex Analysis. In particular, Entire functions,Classes of holomorphic functions representable by Carleman formula. Residues in Several Complex variables.

1) A.Vidras and A.Yger: `On Asymptotic approximations of the residual currents', Trans. Amer. Math. Soc., vol.350, no.10, p.4105-4125, 1998.2) L.Aizenberg, A.Tumanov and A.Vidras : `The class of holomorphic functions representable by Carleman's formula', Annal. Scuola Norm. Sup. Pisa Cl.Sci.(4), vol.27, no.1, p.93-105, 1998.3) A.Vidras: `Local Residues and discrete sets of uniqueness', Complex Variables and Applications , vol.40, no.1, p.63-92, 1999.4) L.Aizenberg and A.Vidras: `On small complete sets of functions ', Canadian Journal of Mathematics, vol.52, no.1, p.3-31, 2000.5) A.Vidras and A.Yger: `On some generalizations of Jacobi's Residue formula ', Ann. Scient. Ecol. Norm. Sup. (Paris), vol.34, no.1, p. 131-157, 2001. 6) L.Aizenberg and A.Vidras: `Bohr radius for some classes of analytic functions ', Sib. Math. Journ., vol.45, no.1, p.606-617, 2004. 7) C.Berenstein, A.Vidras and A.Yger:`Analyticresidues along algebraic cycles'. Journal of Complexity, vol.21, no1, p.5-42, 2005. vol. 310, p.657-672, 2005. 8) L.Aizenberg and A.Vidras: `On a classof holomorphic functions representable by Carleman formulas in thedisk from their values on the arc of the circle', Mathematische Nachrichten, vol.280, no.1-2, p.4-19, 2007. 9) A.Vidras: `Reconstructing holomorphic functions in a domain fromtheir values on a part of its boundary,'Contemporary Mathematics 455(2008), p.393-410. 10) L.Aizenberg, V. Gotlib, A.Vidras: `Bohr and Rogosinski abscissa for ordinary Dirichlet series'. CMFT,  vol.9(1), p.65-74, 2009. 11) A.Vidras, A.Yger: `Collef-Herrera Currents Revisited', The Mathematical Legacy of Leon Ehrenpreis . Springer Proceedings in Mathematics 16, p.327-352. Spinger Verlag 2012. 12) L.Aizenberg, A.Vidras: `Duality and the class of holomorphic functions representable by Carleman formula.' Complex analysis and dynamical systems V, 1–24, Contemp. Math., 591, Amer. Math. Soc., Providence, RI, 2013. 13) L.Aizenberg, V.Gotlieb and A.Vidras : `Duality for Hardy spaces in domains of $\bf{C}^n$ and some applications', Complex Anal. Oper. Theory 8 (2014), no. 6, 1341–136626p.  14) L.Aizenebrg, E.Liflyand, A.Vidras: `Hausdorff operators in Hardy spaces on some domains in $\bf{C} ^n$'. Complex analysis and dynamical systems VI. Part 2, 27–46, Contemp. Math., 667, Amer. Math. Soc., Providence, RI, 2016.15) A.Vidras, A.Yger: `Brinacon-Skoda Theorem for quotient ring'. Complex analysis and dynamical systems VI. Part 2, 253–278, Contemp. Math., 667, Amer. Math. Soc., Providence, RI, 2016.