<table>
<thead>
<tr>
<th>Course Title</th>
<th>Introduction to Digital Signal Processing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>ECE 429</td>
</tr>
<tr>
<td>Course Type</td>
<td>Elective</td>
</tr>
<tr>
<td>Level</td>
<td>Undergraduate</td>
</tr>
<tr>
<td>Year / Semester</td>
<td>4th Year/ 1st Semester</td>
</tr>
<tr>
<td>Teacher’s Name</td>
<td>Chrysafis Andreou</td>
</tr>
<tr>
<td>ECTS</td>
<td>6</td>
</tr>
<tr>
<td>Lectures / week</td>
<td>2 x 1.5 hours (lectures) + 1 hour (tutorial) per week</td>
</tr>
<tr>
<td>Laboratories / week</td>
<td></td>
</tr>
</tbody>
</table>
| Course Purpose and Objectives| • Provide knowledge and understanding of analysis tools for digital signal processing.
 • Enable the design of DSP systems.
 • Instruct on the implementation and analysis of DSP systems. |
| Learning Outcomes | • Demonstrate knowledge and understanding of discrete-time signal representation and analysis tools.
 • Ability to analyze discrete-time signals using the z-transforms, discrete Fourier transform (DFT), Fast Fourier transform (FFT).
 • Ability to design digital filters using Infinite Impulse Response (IIR) and Finite Impulse Response (FIR).
 • Ability to utilize DSP software tools. |
| Prerequisites | ECE 320 Required |
| Course Content | Discrete-time signals and systems; Fourier and Z-transform analysis techniques, the discrete Fourier transform; elements of FIR and IIR filter design, filter structures; FFT techniques for high speed convolution; quantization effects. |
| Teaching Methodology | • Lectures
 • Homework Assignments
 • Design project |
| Assessment | • Midterm Examination
 • Final examination
 • Homework Assignments
 • Design project |
| Language | Greek |