Course Homepage

Course Description

Bibliography

Lectures

Exams

 Course Websites

 

InstructorsC. Alexandrou, H.Panagopoulos 

Content: The path integral approach to quantization. Euclidean quantum field theory. Quantum fields on a lattice Continuum limit and critical behaviour. The free scalar field on the lattice. Fermions on the lattice. Wilson fermions, Kogut-Susskind staggered fermions, Nielsen-Ninomiya theorem. Abelian gauge fields on the lattice and compact QED. Non-Abelian gauge fields on the lattice, compact QCD. Strong coupling expansion. Hopping parameter expansion. Quark-antiquark potential. Glueball spectrum. Phase structure of lattice gauge theory. Weak coupling expansion in scalar theories and in QCD. The continuum limit of lattice QCD. The beta function and asymptotic freedom. Monte Carlo Methods. Numerical simulation and Markov processes. Algorithms: Metropolis, Heat bath, Overrelazation. Simulation of fermions: Hybrid Monte Carlo, Multiboson algorithms. Deconfinement and chiral phase transitions. High temperature phase of QCD. 

Assesment: Class presentations 40%,  Final exam 60%