ΑΝΤΩΝΗΣ ΚΥΡΜΙΖΗΣ
ΚΥΡΜΙΖΗΣ ΑΝΤΩΝΗΣ
KIRMIZIS ANTONIS
...
ΑΝΑΠΛΗΡΩΤΗΣ/ΡΙΑ ΚΑΘΗΓΗΤΗΣ/ΡΙΑ
Τμήμα Βιολογικών Επιστημών
ΘΕΕ 02 - Σχολή Θετικών και Εφαρμοσμένων Επιστημών
Πανεπιστημιούπολη
057
+357 22 892678
+357 22 895337
www.kirmizislab.com

Προσωπικό Προφίλ

Αναπληρωτής Καθηγητής (2017- ) - Βιολογικές Επιστήμες στο Πανεπιστήμιο Κύπρο
Επίκουρος Καθηγητής (2010-2017) - Βιολογικές Επιστήμες στο Πανεπιστήμιο Κύπρου
Μεταδιδακτορικό (2004-2009) - Επιγενετική στο Πανεπιστήμιο Cambridge, UK
Διδακτορικό (1999-2004) - Κυτταρική και Μοριακή Βιολογία στο Πανεπιστήμιο Wisconsin-Madison, USA
Πτυχίο (1995-1999) - Βιολογία στο Πανεπιστήμιο Lawrence, USA 
 
 
Εργαστήριο Επιγενετικής και Γονιδιακής Ρύθμισης
 
Κύριως στόχος του εργαστηρίου μας είναι να κατανοήσουμε πως οι επιγενετικοί μηχανισμοί, όπως οι μετα-μεταφραστικές τροποποιήσεις των ιστονών και τα μη-κωδικοποιητικά RNAs (ncRNAs), ελέγχουν την μεταγραφή των γονιδίων. Το ενδιαφέρον μας αντλείται από το γεγονός ότι η απορύθμιση αυτών των μηχανισμών μπορεί να πορκαλέσει διάφορες ανθρώπινες ασθένειες όπως ο καρκίνος. Το εργαστήριο μας χρησιμοποιεί μοριακές, βιοχημικές, γενετικές, γενομικές και πρωτεομικές μεθόδους για την επίτευξη του πιο πάνω στόχου σε κύτταρα θηλαστικών και ζύμης (Saccharomyces cerevisiae).
 
Για περισσότερες πληροφορίες επισκεφτείτε την ιστοσελίδα του εργαστηρίου στο http://www.kirmizislab.com
 
Μέλη Ερευνητικής Ομάδας
Evelina Charidemou - Postdoc (ec58[at]cam.ac.uk)
Mamantia Constantinou - PhD student (constantinou.mamantia[at]ucy.ac.cy)
Christina Demetriadou - PhD student (cdemet92[at]gmail.com)
Costas Koufaris - Postdoc (costaskoufaris[at]gmail.com)
Maria Kouma - BSc student (kouma.maria[at]ucy.ac.cy)
Dimitris Kyriakou - Postdoc (dimitris-kyriakou[at]hotmail.com)
Rafaela Panayi - BSc student (panayi.rafaela[at]ucy.ac.cy)
Mariel Vrondi - Lab manager (mariavrondi[at]hotmail.com)
 
 
Προηγούμενοι Μεταπτυχιακοί και Μεταδιδακτορικοί συνργάτες
Agathi Elpidoforou
Diego Molina Serrano
Nayia Nicolaou
Demetria Pavlou
Anastasia Raoukka
Manolis Stavrou
Vassia Schiza
Aaron Plys
 
 
Demetriadou, C. et al. NAA40 contributes to colorectal cancer growth by controlling PRMT5 expression. Cell Death Disease, 10(3):236 (2019).
 
Molina-Serrano, D., Kyriakou, D., Kirmizis, A. Histone modifications as an intersection between diet and longevity. Frontiers in Genetics, 10:192 (2019).
 
Demetriadou, C & Kirmizis, A. Histone Acetyltransferases in Cancer: Guardians or Hazards? Critical Reviews in Oncogenesis 22:195-218 (2017).
 
Molina-Serrano, D & Kirmizis, A. Calorie restriction breaks an epigenetic barrier to longevity. Cell Cycle 20:1-2 (2017).
 
 
 
 
 
Molina-Serrano, D. et al.Cross-talk among epigenetic modifications: lessons from histone arginine methylation. Biochem Soc Trans 41(3):751-759 (2013).
 
Kirmizis, A. et al. Distinct transcriptional outputs associated with mono- and dimethylated histone H3 arginine 2. Nature Struct Mol Biol 16, 449-451 (2009).
 
Santos-Rosa, H., Kirmizis, A. et al. Histone H3 tail clipping regulates gene expression. Nature Struct Mol Biol 16, 17-22 (2009).
 
 
Kirmizis, A. and Farnham, P.J. Genomic approaches that aid in the identification of transcription factor target genes. Exp Biol Med 229,705-721 (2004).
 
Kirmizis, A. et al. Silencing of human polycomb target genes is associated with methylation of histone H3 Lys 27. Genes & Development 18, 1592-1605 (2004).
 

Profile Information

Associate Professor (2017 onwards) - Biological Sciences at University of Cyprus
Assistant Professor (2010-2017) - Biological Sciences at University of Cyprus 
Postdoctoral researcher (2004-2009) - Chromatin and Epigenetics at University of Cambridge, UK
PhD (1999-2004) - Cellular and Molecular Biology at University of Wisconsin-Madison, USA
B.A. (1995-1999) - Biology at Lawrence University, USA
 
 
Laboratory of Epigenetics and Gene Regulation
 
The overall aim of our group is to understand how epigenetic mechanisms, such as those involving histone modifications, control the transcription of genes. We are driven by the fact that deregulation of these mechanisms leads to diseases such as cancer. To accomplish the above research aim we employ interdisciplinary approaches including molecular biology, biochemical, genetic, genomic and proteomic techniques using both mammalian and yeast cells as model systems.

 

Histone modifications:

In every eukaryotic cell the genome is packaged into chromatin which is mainly composed of the DNA and the histone proteins. The organization and structure of chromatin within the nucleus can regulate the transcription of DNA. Post-translational modifications placed on histone proteins, such as methylation, acetylation and phosphorylation, can influence the configuration of chromatin and ultimately control DNA accessibility by the transcriptional machineries. Several cellular enzymes have been discovered so far that can deposit or remove modifications on histones. Therefore, histone modifying enzymes and their underlying modifications play a crucial role in the regulation of gene expression. Driven by the fact that many of these histone modifiers are frequently mutated or deregulated in human cancer our group is interested in understanding the molecular mechanisms employed by these enzymes and their underlying modifications during gene regulation. Of particular interest to our research are the enzymes that methylate arginine residues on histone proteins known as protein arginine methyltransferases (PRMTs) and an enzyme that N-terminally acetylates histones (NAA40). Our previous work has begun to unravel the biological function and molecular mechanisms by which these histone modifying enzymes and their associated modifications control gene expression (Figures 1 and 2 below). To further our knowledge on this epigenetic mode of gene regulation our current work is focused in the following areas:



1) Identify and characterise novel regulators of histone arginine methylation and histone N-terminal acetylation.

2) Determine the interplay of arginine methylation and N-terminal acetylation with other histone modifications during gene expression.

3) Investigate the link among these histone modifications, their enzymes (PRMTs and Naa40) and the development of cancer.
 
Achieving the above research goals will provide important clues to better understand how these epigenetic factors contribute to fundamental cellular processes. Our long–term goal is to apply the information acquired on the basic biology of histone modifications, PRMTs and NAA40 towards the development of therapeutic targets and diagnostic tools for cancer.
 
For more information please visit our lab website at http://www.kirmizislab.com
 
Figure 1 2019 08 28 at 13.14.06                    Figure 2 2019 08 28 at 13.17.17
 
 
Current Lab Members

Evelina Charidemou - Postdoc (ec58[at]cam.ac.uk)

Mamantia Constantinou - PhD student (constantinou.mamantia[at]ucy.ac.cy)

Christina Demetriadou - PhD student (cdemet92[at]gmail.com)

Costas Koufaris - Postdoc (costaskoufaris[at]gmail.com)

Maria Kouma - BSc student (kouma.maria[at]ucy.ac.cy)

Dimitris Kyriakou - Postdoc (dimitris-kyriakou[at]hotmail.com)

Rafaela Panayi - BSc student (panayi.rafaela[at]ucy.ac.cy)

Mariel Vrondi - Lab manager (mariavrondi[at]hotmail.com)

 
Previous Graduate Students and Post-docs

Agathi Elpidoforou

Diego Molina Serrano

Nayia Nicolaou

Demetria Pavlou

Anastasia Raoukka

Manolis Stavrou

Vassia Schiza

Aaron Plys

 

 

                                     Lab photo 2019 08 28 at 13.19.32

Demetriadou, C. et al. NAA40 contributes to colorectal cancer growth by controlling PRMT5 expression. Cell Death Disease, 10(3):236 (2019).

Molina-Serrano, D., Kyriakou, D., Kirmizis, A. Histone modifications as an intersection between diet and longevity. Frontiers in Genetics, 10:192 (2019).

Demetriadou, C & Kirmizis, A. Histone Acetyltransferases in Cancer: Guardians or Hazards? Critical Reviews in Oncogenesis 22:195-218 (2017).

Molina-Serrano, D & Kirmizis, A. Calorie restriction breaks an epigenetic barrier to longevity. Cell Cycle 20:1-2 (2017).

Molina-Serrano, D. et al. Loss of Nat4 and its associated histone H4 N-terminal acetylation mediates calorie restriction-induced longevity. EMBO Rep 17(12):1829-1843 (2016).

Kyriakou, D. et al. Functional characterisation of long intergenic non-coding RNAs through genetic interaction profiling in Saccharomyces cerevisiae. BMC Biology 14(1):106 (2016).

Pavlou, D. & Kirmizis, A. Depletion of Naa40 induces p53-independent apoptosis in colorectal cancer cells via the mitochondrial pathway. Apoptosis 21:298-311 (2016).

Schiza, V. et al. N-alpha-terminal acetylation of histone H4 regulates arginine methylation and ribosomal DNA silencing. PLoS Genetics 9(9):e1003805 (2013).

Molina-Serrano, D. et al.Cross-talk among epigenetic modifications: lessons from histone arginine methylation. Biochem Soc Trans 41(3):751-759 (2013).

Kirmizis, A. et al. Distinct transcriptional outputs associated with mono- and dimethylated histone H3 arginine 2. Nature Struct Mol Biol 16, 449-451 (2009).

Santos-Rosa, H., Kirmizis, A. et al. Histone H3 tail clipping regulates gene expression. Nature Struct Mol Biol 16, 17-22 (2009).

Kirmizis, A. et al. Arginine methylation at histone H3R2 controls deposition of H3K4 trimethylation. Nature 449, 928-32 (2007).

Kirmizis, A. and Farnham, P.J. Genomic approaches that aid in the identification of transcription factor target genes. Exp Biol Med 229,705-721 (2004).

Kirmizis, A. et al. Silencing of human polycomb target genes is associated with methylation of histone H3 Lys 27. Genes & Development 18, 1592-1605 (2004).

Kirmizis, A. et al. Identification of the polycomb group protein SUZ12 as a potential molecular target for human cancer therapy. Mol Cancer Ther 2, 113-121 (2003).